Study of cytogenetic abnormalities in G-CSF stimulated peripheral blood cells and non-stimulated bone marrow cells of patients with myelofibrosis.
نویسندگان
چکیده
UNLABELLED The aim of the study was to improve cytogenetic diagnostics and monitoring of myelofibrosis and to reveal the spectrum of cytogenetic abnormalities in patients from Ukraine. MATERIALS AND METHODS A total of 42 patients (23 females and 19 males) with myelofibrosis was studied using different cytogenetic methods. Granulocyte colony-stimulating factor (G-CSF) was added by the new method during cultivation of peripheral blood (PB) cells from 31 patients for specific stimulation of mitotic divisions. Two patients underwent examination by fluorescent in situ hybridization method. RESULTS In cell cultures of PB stimulated in vitro with G-CSF and in non-stimulated bone marrow chromosome abnormalities were found in 19 (45.2%) of all the patients. The spectrum of cytogenetic abnormalities of bone marrow and PB was the same in all of the patients. Aspiration of bone marrow was unsuccessful due to significant fibrosis in 10 (29.4%) of 34 patients. The study by fluorescent in situ hybridization method confirmed cytogenetic abnormalities revealed by G-method and discovered additional possibly normal subclone. CONCLUSIONS Cytogenetic study of PB using in vitro G-CSF as a specific stimulant of mitosis instead of phytohemagglutinin revealed significant variety of chromosomal abnormalities in Ukrainian patients with myelofibrosis. This method could be a less invasive alternative to cytogenetic examination of bone marrow in the subgroup of patients with considerable fibrosis and consecutive changes. The usage of fluorescent in situ hybridization method supplemented karyotyping by G-banding method.
منابع مشابه
G-CSF for mobilizing transplanted bone marrow stem cells in rat model of Parkinson's disease
Objective(s): Granulocyte-colony stimulating factor (G-CSF) is used in clinical practice for the treatment of neutropenia and to stimulate generation of hematopoietic stem cells in bone marrow donors. In the present study, the ability of G-CSF in mobilizing exogenous bone marrow stem cells (BMSCs) from peripheral blood into the brain was tested. We for the first time injected a small amount of ...
متن کاملCytogenetic studies in myeloma.
Chromosomes have been studied in cultures of nucleated peripheral blood cells in 30 patients with myeloma. Both unstimulated cultures and cultures stimulated by phytohemagglutinin (PHA) were examined in all cases. Mitoses were observed in 13 unstimulated cultures of peripheral blood from 12 cases, providing evidence for the presence of circulating abnormal cells in these patients. In 19 stimula...
متن کاملبررسی تاثیر ریتم شبانه روزی بر ترشح آدرنالین و نور آدرنالین و ارتباط ان با میزان موبیلیزاسیون سلول های بنیادی CD34
Hematopoietic stem cells (HSCs), which have the ability to differentiate into various types of blood cell lines, are usually separate from the bone marrow. But these cells are also present in a small amount in the peripheral blood, and their amounts increase in blood following injection of G-CSF. However, the mechanism involved in moving HSCs under the influence of G-CSF is unknown. The aim of ...
متن کاملFalse Negativity of Tc-99m Labeled Sodium Phytate Bone Marrow Imaging Under the Effect of G-CSF Prescription in Aplastic Anemia: A Case Report
Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine which controls the differentiation and growth of hematopoietic cells in the bone marrow. We report a severe aplastic anemia (SAA) patient with false-negative 99mTc sodium phytate bone marrow imaging findings under concurrent G-CSF therapy. The first bone marrow imaging showed a normal bone marrow activity. However, the bo...
متن کاملDifferent Expressions of Specific Transcription Factors of Th1 (T-bet) and Th2 cells (GATA-3) by Peripheral Blood Mononuclear Cells From Patients With Multiple Sclerosis
Introduction: Multiple Sclerosis (MS) is an inflammatory disorder caused by self-reactive Th1 lymphocytes, while Th2 cells may confer protection. The Th1 and Th2 cell differentiation are regulated by specific transcription factors, especially T-bet and GATA-3, respectively. This investigation aimed to measure the T-bet and GATA-3 expression by Peripheral Blood Mononuclear Cells (PBMCs) obtained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental oncology
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2016